Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors.

نویسندگان

  • Yukitoshi Izumi
  • Yves P Auberson
  • Charles F Zorumski
چکیده

Zinc has complex effects on NMDA receptors (NMDARs) and may be an endogenous modulator of synaptic plasticity. In the CA1 region of rat hippocampal slices, we observed that low micromolar concentrations of zinc depress NMDAR synaptic responses by 40-50% and inhibit long-term depression (LTD) but not long-term potentiation (LTP). A combination of zinc plus ifenprodil, an inhibitor of NR1/NR2B receptors, produced no greater inhibition of synaptic NMDARs than either agent alone, suggesting overlapping effects on NMDARs. Similar to low micromolar zinc, ifenprodil inhibited LTD but not LTP. In contrast, low concentrations of 2-amino-5-phosphonovalerate (APV) did not block either LTP or LTD despite producing >50% inhibition of synaptic NMDARs. NVP-AAM077 ([(R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydro-quinoxalin-5-yl)-methyl]phosphonic acid), an antagonist with relative NR1/NR2A selectivity at low concentrations, also inhibited synaptic NMDARs by approximately 50% at 0.05 mum but failed to completely block either LTP or LTD. These results suggest that LTD induction depends on specific NMDARs with sensitivity to low micromolar zinc and ifenprodil, but LTP is less dependent on specific NMDAR subtypes. Because high-affinity sites of NR2A are likely occupied by ambient zinc, we also examined effects of extracellular zinc chelators. Zinc chelation blocked LTP but had no effect on LTD. This LTP inhibition was overcome by APV and NVP-AAM077 but not ifenprodil, suggesting that zinc chelation unmasks tonic NR1/NR2A activation that negatively modulates LTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats

Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...

متن کامل

Assessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat

Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...

متن کامل

The role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats

Introduction: Zinc is an essential trace element that plays an important role in the synaptic plasticity and modulation of the CNS activity and is also involved in learning and memory. Synaptic vesicle zinc in the hippocampus area exerts modulatory effects on NMDA glutamate receptors. Methods: In this study, the effects of intra hippocampal administration of NMDA agonist and antagonist in the p...

متن کامل

D1/D5 modulation of synaptic NMDA receptor currents.

Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D(1)/D(5) receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D(1)/D(5) modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 p...

متن کامل

Zinc effects on NMDA receptor gating kinetics.

Zinc accumulates in the synaptic vesicles of certain glutamatergic forebrain neurons and modulates neuronal excitability and synaptic plasticity by multiple poorly understood mechanisms. Zinc directly inhibits NMDA-sensitive glutamate-gated channels by two separate mechanisms: high-affinity binding to N-terminal domains of GluN2A subunits reduces channel open probability, and low-affinity volta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 27  شماره 

صفحات  -

تاریخ انتشار 2006